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10
Fractal-Shot-Noise-Driven

Point Processes

In 1939, the Polish-born mathemati-
cian Jerzy Neyman (1894–1981)
conceived the “Neyman Type-A”
probability distribution and, with
Elizabeth Scott in 1958, developed
its generalization: the cluster point
process.

Maurice Stevenson Bartlett
(1910–2002), a British statistician,
constructed the shot-noise-driven
doubly stochastic Poisson point
process and showed that it is a
particular Neyman–Scott cluster
point process.
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In this chapter we consider two classes of point processes for which fractal shot
noise serves as the rate. Fractal shot noise is a continuous stochastic process described
in detail in the previous chapter. We focus on a point-process generation mechanism
that is Poisson; however, we also briefly consider an integrate-and-reset generation
mechanism at the end of the chapter. The properties of these two classes of point
processes are closely related, as will become apparent subsequently.

Conceived by Bartlett (1964) in the context of ecology, theshot-noise-driven
doubly stochastic Poisson point process(abbreviatedshot-noise-driven Poisson
process) results when any form of shot noise serves as the rate for a Poisson-event
generator. Bartlett developed a two-dimensional version of this process and rec-
ognized it as a particularNeyman–Scott cluster process(see Sec. 4.5) comprising
Poisson primary and Poisson secondary event sequences [see Neyman & Scott (1958);
Vere-Jones (1970); Lawrance (1972)]. An extensive list of applications has come to
the fore for this family of point processes, in fields as diverse as entomology, astro-
physics, visual science, geophysics, neurophysiology, and photon statistics, among
others.1 The probability distribution that universally emerges in the long counting-
time limit, the Neyman Type-A distribution (Neyman, 1939), has also found extensive
application.2

The generation of this process is schematically illustrated in Fig. 10.1. A primary
homogeneous Poisson point processdN1(t)with mean rateµcomprises the first stage.
These events then pass through a linear filter with impulse response functionh(t).

1 Examples can be found in Neyman & Scott (1958); Vere-Jones (1970); Neyman & Scott (1972); Teich
& Saleh (1981b, 1987, 1988, 1998); Saleh & Teich (1982, 1983); Saleh, Tavolacci & Teich (1981); Teich,
Saleh & Pěrina (1984).
2 See, for example, McGill (1967); Teich (1981); Teich & Saleh (1981a, 1987, 2000); Saleh & Teich
(1985a); Saleh et al. (1983); Teich, Prucnal, Vannucci, Breton & McGill (1982a,b); Prucnal & Teich
(1982); Teich, Tanabe, Marshall & Galayda (1990).
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Fig. 10.1 The shot-noise-driven doubly stochastic Poisson point process arises from two
Poisson processes mediated by a linear filter. The quantityµ represents the rate of the first
Poisson point process,h(t) is the impulse response function of the linear filter, andX(t) is the
continuous-time shot-noise amplitude at the output of the linear filter. The stochastic process
X(t) serves as the rate function for a second Poisson point process. The overall outputdN2(t)
is a shot-noise-driven doubly stochastic Poisson point process. Ifh(t) decays in a power-law
fashion,X(t) is fractal shot noise anddN2(t) is a fractal-shot-noise-driven Poisson process.
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This filter produces a shot noiseX(t) at its output. This shot noise, in turn, serves
as the input to a second Poisson process that generates eventsdN2(t) at the time-
varying rate determined byX(t). Since the rate of the point processdN2(t) coincides
with the shot-noise driving processX(t), dN2(t) incorporates the variance imparted
by this rate and therefore does not belong to the family of homogeneous Poisson
point processes. The primary-process rateµ and the impulse response functionh(t)
completely characterizedN2(t).

In this chapter we develop the properties of the fractal-based form ofdN2(t),
which is officially known as thefractal-shot-noise-driven doubly stochastic Pois-
son point process, which we abbreviate as thefractal-shot-noise-driven Poisson
process. In accordance with the results established in Chapter 9, the linear-filter
impulse response function decays in a power-law fashion, which gives rise to the
fractal-shot-noise stochastic rateX(t). The impulse response functionh(K, t) is
taken to contain a stochastic component. We can also describe the fractal version of
the shot-noise-driven Poisson process in terms of a two-stagefractal Neyman–Scott
cluster process, in which each event of a primary Poisson point process directly gen-
erates a random number of events in a secondary Poisson point process (see Sec. 4.5).
The two formulations are isomorphic (see Lowen & Teich, 1991, Appendix A). In the
last sections of the chapter, several related processes are briefly described; these in-
clude thefractal-shot-noise-driven integrate-and-reset process, theHawkes point
process, and thefractal Bartlett–Lewis cascaded process.

The fractal-shot-noise-driven Poisson process enjoys a broad variety of appli-
cations, including the modeling of earthquake occurrence times,Čerenkov photon
statistics, diffusion processes, action-potential statistics, and computer network traf-
fic (considered in Secs. 13.5.5 and 13.6). Various applications are discussed by
Vere-Jones (1970); Lowen & Teich (1991); Teich et al. (1997, 1990); Ryu & Lowen
(1995, 1997, 1998), as well as in the problems at the end of this chapter.

10.1 INTEGRATED FRACTAL SHOT NOISE

The time integral of the shot-noise processX(t) forms an auxiliary random process
XT (t),

XT (t) ≡
∫ t+T

t

X(u) du. (10.1)

Conveniently, the time integral of a shot-noise process forms another shot-noise pro-
cess, with corresponding impulse response function

hT (K, t) ≡
∫ t+T

t

h(K, u) du. (10.2)

A representative pair of impulse response functions,h(t) andhT (t), is shown in
Fig. 10.2.

The integrated process finds use in establishing the properties of the fractal-shot-
noise-driven Poisson processdN2(t). The first-order moment generating function
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Fig. 10.2 Representation of a particular power-law-decaying impulse response function,
h(t) (×10) vs. timet (solid curve), and its associated integrated impulse response function,
hT (t) (dotted curve). The parameters areβ = 1

2
, A = 1, B = 100, K = 1, andT = 20.

The integrated versionhT (t) is derived fromh(t) via Eq. (10.2); for the parameters shown it
is proportional to the average ofh(t) over the following 20 time units.

of the integrated shot-noise processXT (t) turns out to yield all of the first-order
statistics ofdN2(t), including its counting and time-interval distributions (Saleh &
Teich, 1982). Closed-form results are available for some special cases (Lowen &
Teich, 1991, Sec. IIIC and Appendix B).

10.2 COUNTING STATISTICS

10.2.1 Counting distribution

A recurrence relation provides the counting distribution,pZ(n; T ) = Pr{Z(T ) = n},
for any shot-noise-driven Poisson process (Saleh & Teich, 1982). The first step is to
determine the probability of zero events occurring in a specified time durationT :

pZ(0; T ) = exp
(

µE
[∫ ∞

−∞

{
exp[−hT (K, t)]− 1

}
dt

])
, (10.3)

where the expectation is overK. Forn > 0 we write

pZ(n + 1; T ) =
1

n + 1

n∑

k=0

ck pZ(n− k; T ), (10.4)
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where the coefficientsck are given by

ck ≡ µ

k!
E

[∫ ∞

−∞

[
hT (K, t)

]k+1

exp[−hT (K, t)] dt

]
. (10.5)

Detailed expressions for the coefficientsck, which permit the counting distribution
to be calculated, are provided in Sec. A.7.1 for a fractal-shot-noise-driven Poisson
process with a deterministic impulse response function.

The Neyman Type-A counting distribution emerges from Eqs. (10.3)–(10.5)
in the limit of a deterministic, delta-function impulse response function of areaa,
h(t) = a δ(t):

pZ(0; T ) = exp
{
µT

(
e−a − 1

)}
(10.6)

pZ(n + 1; T ) =
1

n + 1
µT

n∑

k=0

ak+1e−a

k!
pZ(n− k;T ). (10.7)

Although this distribution corresponds to the instantaneous generation of multiple
secondary events, and thereby violates the assumption of an orderly point process
(see Sec. 3.2), we nevertheless consider this simplification to illustrate how the Ney-
man Type-A counting distribution arises in appropriate limits. This distribution also
applies for arbitraryh(t) in the domainT À (B − A) since all secondary events
born of a single primary event, although splayed out over a time(B − A), are fully
captured within the counting timeT [see Lowen & Teich, 1991, Eq. (21)].

With the help of these results, we plotpZ(n;T ) in Fig. 10.3 forβ = 1
2 (α = 1).

Representative results for other parameters appear in Lowen & Teich (1991, Figs. 3–
5). The counting distributions displayed in Fig. 10.3 interpolate between the Poisson
distribution [Eq. (4.7)] and the Neyman Type-A distribution [Eq. (10.7)], in the short-
and long-counting-time limits, respectively.

In fact, the two-parameter Neyman Type-A distribution serves as an excellent
approximation for a broad variety of counting distributions associated with shot-
noise-driven Poisson processes for arbitrary values ofT/(B −A). Good agreement
over a substantial range of parameters obtains by matching the means and variances of
the Neyman Type-A and the exact distributions, as has been explicitly demonstrated
for rectangular and exponential impulse response functions (Teich & Saleh, 1987).

Finally, we note that the Neyman Type-A distribution also provides a good ap-
proximation for counting distributions associated with the Thomas point process, for
these same impulse response functions (Teich & Saleh, 1987). This latter process
incorporates the events of the primary homogeneous Poisson process (see Fig. 10.1),
along with the secondary events, into the final process. The statistical properties of
the Thomas process, which does not belong to the family of doubly stochastic Poisson
processes, have been investigated by Matsuo et al. (1983) (see also Secs. 4.5 and 4.6);
Thomas (1949) initially developed the exact two-parameter counting distribution that
emerges in the limit of large counting times. Various properties and applications of
these distributions, as well as doubly stochastic versions thereof, have been studied
by Teich (1981).
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Fig. 10.3 Counting distributionpZ(n; T ) vs. number of countsn for the fractal-shot-noise-
driven Poisson process (FSNDP) withβ = 1

2
, A = 1, B = 105, a = 10, andE[Z] = 10.

Curves are shown for four values of the counting time:T = 102, 104, 106, and108. An entire
family of counting distributions can be presented while preservingE[Z] = 10 since the fractal-
shot-noise-driven Poisson process has five parameters. For small values of the counting time
(T/A → 0), the distribution approaches the Poisson whereas for large values of the counting
time (T À B), it approaches the Neyman Type-A for anyA andβ. Since the fractal renewal
process depends on only three parameters, it is not possible to provide a similar display in
Fig. 7.6.

10.2.2 Count moments

Although general expressions for the count moments prove complex, a relatively
simple result emerges for the factorial moments. This again takes the form of a
recurrence relation (Saleh & Teich, 1982):

E
{

[Z(t)]!
[Z(t)− (n + 1)]!

}
=

n∑

k=0

bk

(n

k

)
E

{
[Z(t)]!

[Z(t)− (n− k)]!

}
, (10.8)

with

E
{

[Z(t)]!
[Z(t)]!

}
≡ 1 and bk ≡ µE

[∫ ∞

−∞

[
hT (K, t)

]k+1

dt

]
. (10.9)

Explicit formulas for the particular case of the fractal shot-noise-driven Poisson pro-
cess exist in this case as well (Lowen & Teich, 1991) (see Sec. A.7.1).
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The first factorial moment is the mean number of counts, and rearranging the first
two factorial moments yields the variance:

E[Z(T )] = E
{

[Z(t)]!
[Z(t)− 1]!

}
= b0

= µE
[∫ ∞

−∞
hT (K, t) dt

]
= µT E

[∫ ∞

0

h(K, t) dt

]

= µaT ; (10.10)

Var[Z(T )] = E
{

[Z(t)]!
[Z(t)− 2]!

}
+ E[Z(T )]− E2[Z(T )]

= b0 + b1 = µaT + µE
{∫ ∞

−∞
[hT (K, t)]2 dt

}

= µaT + 2µ

∫ T

0

(T − u)

× E
[∫ ∞

−∞
h(K, t)h(K, t + u) dt

]
du. (10.11)

The quantitya is the expected value of the area of the impulse response function,

a ≡ E
[∫ ∞

0

h(K, t) dt

]
. (10.12)

Equation (9.7) provides thatE[X] = µa.

10.2.3 Normalized variance

As provided in Sec. 3.4.2, the ratio of the count variance to the count mean yields the
normalized variance (Saleh & Teich, 1982):

F (T ) = 1 +
2

aT

∫ T

0

(T − u) E
[∫ ∞

−∞
h(K, t)h(K, t + u) dt

]
du. (10.13)

As with any shot-noise-driven Poisson process, this quantity does not depend on the
rateµ of the driving Poisson process.

Using the impulse response function provided in Eq. (9.2) for fractal shot noise,
the normalized variance for the fractal-shot-noise-driven Poisson process becomes
(Lowen & Teich, 1991):

F (T ) = 1 +
2E[K2]

aT

∫ min(T,B−A)

0

(T − u)
∫ B−u

A

(t2 + ut)−β dt du. (10.14)

Equation (10.14) does not in general reduce to a closed-form expression, although
closed-form results exist forβ = 1

2 andβ = 2 (see Sec. A.7.2). In other cases,
approximations must suffice.
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ForT ¿ A, and for anyB andβ, the normalized variance varies linearly withT
(Lowen & Teich, 1991),

F (T ) ≈ 1 +
E[K2]

a

[∫ B

A

t−2β dt

]
T = 1 +

Var[X]
E[X]

T, (10.15)

as shown in Sec. A.7.2.
In the rangeA ¿ T ¿ B, F (T ) approaches a number of simple forms (Lowen

& Teich, 1991) that depend onβ (see Sec. A.7.2):

F (T ) ≈ 1 +
E[K2]
E[K]

×





1− β
1− 2β

B−β T 0 ≤ β < 1
2

1
2B−1/2 ln(B/T )T β = 1

2

Γ(α/2) Γ(1− α)
(1 + α) Γ(1− α/2) B−α/2 Tα

1
2 < β < 1

(1 > α > 0)

ln2(T/A)
ln(B/A) β = 1

(β − 1)−1 A1−β
β > 1.

(10.16)

In the domain1
2 < β < 1, we cast the expression in terms ofα ≡ 2(1 − β), rather

than in terms ofβ, to highlight the scaling behavior of this measure over this range
of exponents (0< α < 1).

Finally, for T À B, and for anyA andβ, the normalized variance approaches a
constant value (see Sec. A.7.2; Lowen & Teich, 1991) given by

F (T ) ≈ 1 +
E[K2]
E2[K]

a. (10.17)

For a deterministic impulse response function, this reduces toF (T ) ≈ 1 + a. This
result forT À B is consistent with the Neyman Type-A counting distribution set
forth in Eq. (10.7), as required for any shot-noise-driven Poisson process (Saleh &
Teich, 1982).

We plot the normalized varianceF (T ) in Fig. 10.4 for a range of power-law
exponentsβ, as a function of the counting timeT .
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012341� = 2
COUNTING TIME TNORMALIZE

DVARIANCE
F(T)

10610410210010�210�4

103102101100
Fig. 10.4 Normalized varianceF (T ) vs. counting timeT provided in Eq. (10.14) for five
values of the power-law exponentβ: 0, 1

2
, 3

4
, 1, and2. The remaining parameters are fixed

at A = 1, B = 106, anda = 103 (K is chosen to be deterministic). For1
2

< β < 1, the
normalized variance grows asT 2−2β = T α, in accordance with Eq. (10.16).

10.2.4 Normalized Haar-wavelet variance

We calculate the normalized Haar-wavelet varianceA(T ) set forth in Sec. 3.4.3 by
using Eq. (10.14) in conjunction with Eq. (3.41). The calculations depend on the value
of T , and three domains emerge:T ≤ (B − A)/2, (B − A)/2 < T ≤ (B − A),
and T > (B − A). Rather than using Eq. (10.14), we could alternatively insert
Eqs. (10.15)–(10.17) forF (T ) directly into Eq. (3.41) to provide a parallel set of
equations forA(T ).

Effecting such a direct substitution requires caution, however, as discussed at the
end of Sec. 5.2.4. As shown by Eqs. (5.37)–(5.39), the use of asymptotic formulas
for F (T ) in Eq. (3.41) yields invalid results when linear terms dominateF (T ) − 1.
This caution specifically applies to Eq. (10.15) for all values ofβ and to Eq. (10.16)
for β < 1

2 . For substitution into Eq. (3.41) we must therefore either use Eq. (10.14)
directly, or employ versions of Eqs. (10.15)–(10.17) that retain higher-order terms.

Using these methods, we carry out calculations in Sec. A.7.3 that lead to the
following results for the normalized Haar-wavelet variance.

ForT ¿ A, the dependence ofA(T ) onT is quadratic:

A(T ) ≈ 1 + (3a)−1 E[K2] (A−2β + B−2β)T 2. (10.18)
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Fig. 10.5 Normalized Haar-wavelet varianceA(T ) vs. counting timeT derived via
Eqs. (10.14) and (3.41) for five values of the power-law exponentβ: 0, 1

2
, 3

4
, 1, and 2.

The remaining parameters are fixed atA = 1, B = 106, anda = 103 (K is chosen to be
deterministic). For0 < β < 1, the normalized Haar-wavelet variance grows asT 2−2β = T α,
in accordance with Eq. (10.19).

In the rangeA ¿ T ¿ B, A(T ) approaches a simple form that depends onβ (see
Sec. A.7.3):

A(T ) ≈ 1+
E[K2]
E[K]

×





(2α − 2) Γ(α/2) Γ(2− α)
(α2 − 1) Γ(1− α/2)

B−α/2 Tα 0 < β < 1
2

(2 > α > 1)

ln(2) B−1/2 T
β = 1

2
(α = 1)

(2− 2α) Γ(α/2) Γ(2− α)
(1− α2) Γ(1− α/2)

B−α/2 Tα
1
2 < β < 1

(1 > α > 0)

ln2(T/A)
ln(B/A) β = 1

(β − 1)−1 A1−β β > 1.
(10.19)

We have cast some of these expressions in terms ofα ≡ 2(1 − β), rather than in
terms ofβ, to highlight the scaling behavior ofA(T ). Scaling extends over the range
0 < β < 1 (0 < α < 2). This range exceeds that over which scaling extends for the
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normalized varianceF (T ) inasmuch as the latter cannot increase faster thanT 1, as
discussed in Sec. 5.2.3:12 < β < 1 (1 > α > 0).

Finally, for T À B, and for anyA andβ, Eqs. (3.41) and (10.17) provide that
A(T ) = 2F (T ) − F (2T ) = F (T ) so thatA(T ) is constant. This is, of course, the
domain in which the Neyman Type-A counting distribution prevails.

The normalized Haar-wavelet varianceA(T ) is displayed in Fig. 10.5 for a range
of power-law exponentsβ, as a function of the counting timeT .

10.3 TIME STATISTICS

The probability densities for the forward recurrence time,pϑ(t), and the interevent
time,pτ (t), are determined from the probability that zero events occur in an interval of
durationT ,pZ(0; T ), as its first two derivatives (see Secs. 3.3.1 and 3.4.1). Combining
Eqs. (3.30) and (10.3) provides

pτ (t) =
1

E[X]
d2

dt2
exp

(
µE

[∫ ∞

−∞
{exp[−ht(K,u)]− 1} du

])
, (10.20)

whereX(t) represents the shot-noise process that emerges at the output of the linear
filter (see Fig. 10.1).

Section A.7.4 provides detailed expressions forpϑ(t) andpτ (t) for a deterministic
impulse response function. With the help of these results, we plot the interevent-
interval probability density functionpτ (t) in Fig. 10.6 for several values of the power-
law exponentβ. Representative results for other parameters, and for the forward-
recurrence-time density, are presented in Lowen & Teich (1991, Figs. 9–12).

The significant differences among the curves in Fig. 10.6 reflect the varying degree
of clustering that fractal-shot-noise-driven Poisson processes can exhibit. A large
degree of clustering is accompanied by an increase in the probability of very short
and very long interevent times, at the expense of times near the mean, relative to an
exponential density of the same mean. Figure 10.6 shows that the clustering increases
asβ increases. To explain this, we observe that the clustering has its origin in the
variations of the fractal shot-noise rateX(t). For larger values ofβ, particularly
β > 1, the majority of the areaa of the impulse response function lies in a small
region near the onset timeA, with proportionately less area in the tail. For smaller
values ofβ, in contrast, the value of the impulse response function changes far less
over its durationB − A. Thus, the fractal shot-noise rateX(t) exhibits greater
variations for large values ofβ, and the fractal-shot-noise-driven Poisson process
therefore concomitantly exhibits more clustering, assuming that all other parameters
remain constant.

For τ = 0 and all values ofβ we have (Lowen & Teich, 1991)

pτ (0) = 1/E[τ ] + E[τ ] Var[X], (10.21)

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005
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Fig. 10.6 Interevent-interval probability density function,pτ (t) vs. t, for the fractal-shot-
noise-driven Poisson process. We display results for three values of the power-law exponent:
β = 1

2
, 1, and2. The remaining parameters are fixed atA = 1, B = 105, a = 100, µ = 10−4,

andE[τ ] = 100 (K is chosen to be deterministic). The probability density exhibits a range of
power-law behaviors as the timet and the power-law exponentβ vary.

whereas in the limitτ →∞ the probability density function approaches exponential
form (Lowen & Teich, 1991),

pτ (t) → µ(1− e−a)2

a
exp

[−µt(1− e−a)
]
, (10.22)

by virtue of Eqs. (3.30) and (10.6). The exponential nature of the primary Poisson
processdN1(t) carries over to the interevent-interval statistics for large interevent
timesτ . Forβ > 1, the concentration of the areaa of the impulse response function
near the onset timeA results in tight clustering of the events ofdN2(t) following
primary events. The long intervals thus essentially derive from the primary process
dN1(t), andpτ (t) exhibits an exponential tail, albeit with reduced amplitude in com-
parison with a homogeneous Poisson process. Even forβ < 1, interevent intervals
longer thanB − A usually derive from the primary process, particularly for small
values ofµ(B−A), whereX(t) = 0 for significant periods of time. This, too, results
in an exponential tail.
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10.4 COINCIDENCE RATE

The coincidence rateG(t) for a doubly stochastic Poisson process closely follows
the autocorrelation of its driving rate, as provided by Eq. (4.24). Since the fractal-
shot-noise-driven Poisson process belongs to the family of doubly stochastic Poisson
processes, this equation applies here.

Inserting Eq. (9.20) for the autocorrelation of theX(t) into Eq. (4.24) provides an
expression for the coincidence rate:

G(t) = E[X] δ(t) + E2[X]

+





µE[K2]
∫ B−|t|

A

(u2 + |t|u)−β du |t| < B −A

0 |t| ≥ B −A.

(10.23)

Closed-form expressions forG(t) exist forβ = 1
2 , 1 and 2 (Lowen & Teich, 1991).

When the delay timet is small,G(t) approaches a constant value for any power-law
exponentβ:

G(t) = E2[X] + µE[K2]
∫ B

A

t−2β dt. (10.24)

In the regionA ¿ |τ | ¿ B, the coincidence rate takes a variety of forms for
different values ofβ (Lowen & Teich, 1991, Appendix G):

G(t) = E2[X]+µE[K2]×





(1− β)2

(1− 2β) B−1 0 ≤ β < 1
2

1
4B−1 ln(B/|t|) β = 1

2

α Γ(1 + α/2) Γ(1− α)
2Γ(1− α/2) B−α |t|α−1

1
2 < β < 1

(1 > α > 0)

ln(|t|/A)
ln2(B/A)

|t|−1 β = 1

(β − 1)Aβ−1 |t|−β β > 1.
(10.25)

In the domain1
2 < β < 1, we express the results in terms ofα ≡ 2(1 − β) rather

than in terms ofβ, again to emphasize the scaling behavior of this measure.
The coincidence rateG(t), as a function of the delay timet, appears in Fig. 10.7.

To avoid the constant termE2[X] from obscuring the variation inG(t), we actually
graph the expressionG(t)− E2[X] rather thanG(t) itself.
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Fig. 10.7 Excess coincidence rate,G(t)−E2[X] vs. delay timet, obtained from Eq. (10.23)
for five values of the power-law exponent:β = 0, 1

2
, 3

4
, 1, and2. The remaining parameters

are set at fixed values for all curves:A = 1, B = 106, µ = 1, anda = 103 (K is chosen to be
deterministic). In accordance with Eq. (10.25), the functions corresponding toβ > 1

2
exhibit

approximate power-law behavior, with various exponents, over a good portion of their range.
Note the abrupt drop neart = B − A ≈ 106, whereG(t)− E2[X] → 0 in accordance with
Eq. (10.23).

10.5 SPECTRUM

We turn now to the spectrum of the fractal-shot-noise-driven Poisson process. In
accordance with Eq. (4.25), the spectrum ofdN2(t) differs from that ofX(t) only
by an additive constant term,E[X]. In the domainβ < 1 andA ¿ B < ∞, where
SX(f) behaves as1/f -type noise (see Table 9.1), we insert Eq. (9.30) in Eq. (4.25)
to obtain

SN2(f) = SX(f) + E[X]
≈ µE[K2] Γ2(α/2) (2πf)−α + (2/α)µE[K] Bα/2, (10.26)

where we have employed the approximationA → 0, valid for A ¿ B andβ < 1.
Figure 10.8 illustrates the spectrum for the fractal-shot-noise-driven Poisson pro-

cess using the same impulse response functions (abrupt cutoff and exponential), and
the same parameters, as those used to generate the fractal-shot-noise spectrum dis-
played in Fig. 9.4. We can define a crossover frequency by equating the two terms
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Fig. 10.8 SpectrumSN (f) vs. frequencyf for the fractal-shot-noise-driven Poisson process.
The parameter values are the same as those used to generate the curves for the fractal-shot-noise
spectrum,SX(f), displayed in Fig. 9.4:β = 1

2
(α = 1), A = 0, B = 1 000, K = 100, and

µ = 1. For sufficiently high frequencies, the spectrum exhibits1/fα behavior, withα = 1.
The impulse response function with an abrupt cutoff in the time domain results in oscillations
in the frequency domain, whereas an exponential transition yields a smooth curve. In the
high-frequency limit, both curves approach the asymptotic value,limf→∞ SN (f) = E[X] =
2 000

√
10

.
= 6325.

on the right-hand side of Eq. (10.26):

µE[K2] Γ2(α/2) (2πfS)−α = (2/α)µE[K]Bα/2

α Γ2(α/2)/2 =
(
E[K]/E[K2]

)
(2πfS)α Bα/2. (10.27)

10.6 RELATED POINT PROCESSES

10.6.1 Point process in the Gaussian limit of fractal shot noise

Under suitable conditions, the probability density of the driving fractal-shot-noise rate
X(t) converges to a Gaussian form [see Eqs. (9.11) and (9.12), as well as Table 9.1],
and indeedX(t) becomes a Gaussian process. As provided by the central limit
theorem, this takes place in the limitµ → ∞ if E[Kk] < ∞ for all k, A > 0, and
B < ∞ for β ≤ 1 (Lowen & Teich, 1990). Over this range ofβ, the spectrum
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varies as1/f2−2β = 1/fα, andX(t) converges to afractal Gaussian process(see
Sec. 6.3.3). The resulting point processdN2(t) then becomes afractal-Gaussian-
process-driven Poisson process(see Fig. 5.5, Secs. 6.3.3 and 8.4, and Chapter 12).

10.6.2 Fractal-shot-noise-driven integrate-and-reset point process

The discussion thus far has centered on point processes produced by fractal shot noise
driving a Poisson generator. However, fractal shot noise can also serve as the rate func-
tion for other generation mechanisms, such as the integrate-and-reset point process
set forth in Sec. 4.4 (Thurner et al., 1997). Thefractal-shot-noise-driven integrate-
and-reset process, as an example, suitably characterizes spontaneous action-potential
generation in the visual system (Teich & Lowen, 2003).

Many of the properties of the fractal-shot-noise-driven integrate-and-reset process
readily derive from the results set forth in Sec. 4.4, together with the results obtained
earlier in this chapter and in Chapter 9. In particular, the statistics over time scales
that are substantially longer thanE[τ ] (corresponding to frequencies much lower than
1/E[τ ]) virtually coincide with those of the fractal-shot-noise-driven Poisson process.
This conclusion follows because Poisson processes introduce few fluctuations over
these time scales, while integrate-and-reset processes introduce none.

The statistics that are manifested over times comparable to, or less than,E[τ ]
depend largely on the amplitude distribution of the fractal shot noise; Sec. 9.2 and
Eqs. (4.37) and (4.38) prove useful for these calculations. Over all time scales, fractal
shot noise itself provides useful results for the second-order statistics of the fractal-
shot-noise-driven integrate-and-reset process, through Eq. (4.36).

10.6.3 Hawkes point process

We now consider the nontrivial, critical, self-exciting point process displayed in
Fig. 10.9. A classicalHawkes point process(Hawkes, 1971) comprises a Pois-
son process whose output drives a linear filterh(t) to produce a continuous stochastic
processX(t). The sum of this process and an external input (a constantµ0 in the
example at hand) forms a functionµ(t) that serves as the rate for the original Pois-
son process. The stochastic processX(t) therefore shares some similarity with shot
noise. Because the resulting point processdN(t) modulates itself in a feedback loop,
it is a specialself-exciting point process.

In order that the process be stationary, the area of the impulse response functionh(t)
must lie below unity; were that not the case, the rate would grow exponentially over
time. The external inputµ0 can, instead, be a time-varying function that integrates to
a finite value. It is then possible to have an impulse response function with unity area,
but it turns out that the ensuing process has trivial characteristics for general forms
of h(t). However, the selection of fractal forms forh(t) (more precisely, those with
heavy tails) results in nontrivial critical Hawkes point processes, which themselves
have fractal properties (Brémaud & Massoulíe, 2001).
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Fig. 10.9 A stochastic rate processµ(t) modulates the rate of a Poisson process, yielding a
classical Hawkes point processdN(t). This point process serves as the input to a linear filter
with impulse response functionh(t). A continuous-time stochastic processX(t), which is a
form of generalized shot noise, emerges from the output of this filter. The sum ofX(t) and an
external constant rateµ0 provides the stochastic rate processµ(t), completing the loop.

10.6.4 Bartlett–Lewis fractal point process

We conclude this chapter by examining a process constructed from nonfractal renewal
processes to which fractal behavior is imparted in a different way. Consider a Bartlett–
Lewis-type cascaded point process (see Sec. 4.5) constructed from a primary Poisson
point processdN1(t), each event of which initiates a segment of a secondary Poisson
point processdN2,k(t) which, in turn, terminates after a certain number of secondary
eventsMk. The superposition of all secondary events forms the final point process
dN3(t). Primary events (illustrated as dashed vertical lines in the secondary processes
in Fig. 4.2) can be excluded or included in the final process. A number of variations
on this theme have appeared in the literature (Grüneis, 1984; Gr̈uneis & Baiter, 1986;
Grüneis & Musha, 1986; Grüneis, 1987, 2001). This model finds application in
characterizing computer network traffic, as discussed in Secs. 13.5.4 and 13.6.

Fractal behavior in this process arises from the imposition of a power-law distri-
bution on the number of eventsMk associated with each secondary processdN2,k(t)
before its termination. Specifically, let this number follow the distribution

Pr{Mk = m} = mz
/∑Mmax

l=1 lz, (10.28)

whereMk ranges from a minimum of one event to a maximum ofMmax events. A
single segment of a Poisson process of mean interevent intervalE[τ2], and of fixed,
deterministic duration withMk events, has a spectrum given by (Grüneis & Musha,
1986)

2(2πf E[τ2])−2
{
Re

[
(1 + i2πf E[τ2])1−Mk

]− 1
}

. (10.29)
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If Mk now becomes a random variable taking values with probabilities given by
Eq. (10.28), and if each event in the primary processdN1(t), with mean interevent
interval E[τ1], initiates such a secondary process, the resulting cascaded process
dN3(t) exhibits a spectrum of the form

SN3(f) =
(
E[Mk]/E[τ1]

)2
δ(f) + E[Mk]

/
E[τ1]

+

2
Mmax∑

l=1

lz
{
Re

[
(1 + i2πf E[τ2])1− l

]− 1
}

E[τ1] (2πf E[τ2])2
Mmax∑

l=1

lz

. (10.30)

The mean interevent interval of the secondary processes,E[τ2], and the mean
duration of the secondary processes,E[τ2] E[Mk], then play the roles of the cutoffsA
andB associated with the impulse response functionh(t) of the fractal-shot-noise-
driven Poisson process. The spectrum remains relatively constant for frequencies
outside the reciprocals of these two times. However, for frequencies well within these
limits, scaling behavior emerges for certain values of the event-number distribution
exponentz (Grüneis & Musha, 1986). The spectrum then turns out to follow the form

α =





0 z ≤ −3
z + 3 −3 < z < −1
2 −1 ≤ z.

(10.31)

This relationship indicates that the process at hand generates1/fα noise over the
extended range0 < α < 2.

Both the fractal Bartlett–Lewis cascaded process and the fractal Neyman–Scott
cluster process are plausible models for describing computer network traffic, as dis-
cussed extensively in Chapter 13.

Problems

10.1 Interevent-interval density function for large intervals Equation (10.22)
shows that the interevent-interval probability density decays as an exponential for
large interevent intervalsτ . Show heuristically that this holds for the simple case
τ > B −A.

10.2 Normalized variance for rectangular impulse response functionsEvaluate
Eq. (10.14) explicitly for the caseβ = 0, where the impulse response functions reduce
to rectangles. Find the limit of the resulting expression whenA ¿ T ¿ B, and show
that this limit agrees with Eq. (10.16).

10.3 Interval density function associated with a single impulse responseFig-
ure 10.6 displays a set of interevent-interval probability densitiespτ (t) for several
values of the parameterβ. For the particular curve associated withβ = 2, the den-
sity pτ (t) decays as a power-law function of the interval. Consider a single impulse
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response function, and show that the densitypτ (t) of the resulting process indeed
follows this power-law form. Find the slope and extent of this scaling region. Show
that this behavior holds for generalβ > 1.

10.4 Designing a fractal-shot-noise-driven Poisson processBy appropriate se-
lection of the parametersβ, A, B, µ, andK, we can design a fractal-shot-noise-driven
Poisson process that exhibits a1/fα spectrum, a cutoff frequencyfS , and a rate of
events with a particular mean value.

10.4.1. Identify the appropriate equations in the text that relate these three design
values to the five parameters of the fractal-shot-noise-driven Poisson process.

10.4.2. Suppose we also choose values for the coefficient of variation and skew-
ness of the rate, for example, in an attempt to fully specify the process. Using the
specific caseα = 1; fS = 1; an average rate of unity; and fixed, deterministicK
as an example, discuss the constraints on the five design values. One might wish to
employ a rate with a large coefficient of variation to yield an appreciable amount of
fluctuation in the numbers of events generated indN2(t), and also a small skewness
to better approximate a fractal Gaussian process. Show that attempting to simultane-
ously specify both large values of the rate coefficient of variation and small values of
the rate skewness leads to conflicting requirements and unspecified parameters.

10.4.3. Rather than specifying higher moments of the rate, we instead seek to use
the following two constraints:B/A = 103 for an appreciable range of frequencies
following the1/f spectrum, andA = 1/fS to ensure that the spectrum indeed follows
this form up tof = fS . Design a fractal-shot-noise-driven Poisson process with the
specific values given here and in Prob. 10.4.2, and find the coefficient of variation and
the skewness of the rate.

10.5 Impulse response functions without cutoffs Impulse response functions
without cutoffs lead to fractal-shot-noise processes with infinite moments (see Chap-
ter 9). Suppose that we nevertheless employ such a shot-noise-process as a rate for
a Poisson process, generating a point-process outputdN2(t). Describe this point
process, and comment on its orderliness.

10.6 Photon statistics of̌Cerenkov radiation Charged particles traveling faster
than the group velocity of light in a transparent medium emit photons, often in the
visible range. Čerenkov was the first to systematically examine this phenomenon
in a series of experiments conducted during the years 1934–1938 (see, for example,
Čerenkov, 1934, 1937, 1938).

One can use electromagnetic theory to show that the fractal-shot-noise-driven
Poisson process provides a useful model for describing the light produced byČerenkov
radiation arising from a sparse random stream of charged particles. Consider a charged
particle traveling along the positivex-axis through a transparent, non-ferromagnetic
medium of refractive indexn, at a speedv > c/n wherec is the speed of light in
free space, as shown in Fig. 10.10. We define the quantityJ ≡ [(nv/c)2 − 1]1/2;
it is a function of the degree to which the particle velocity exceeds theČerenkov
limit c/n. We calculate the electric and magnetic fields at a distanced from thex-
axis, where we choose the arbitrary point in thex-z plane{−Jd, 0, d} for algebraic
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Fig. 10.10 A charged particle moving faster than the speed of light in a medium emits
Čerenkov radiation. At the point{−Jd, 0, d}, the photon flux density decays as an inverse
power-law function of time. We illustrate three wavefronts for a particle traveling along the
x-axis, corresponding to timest < 0, t = 0, andt > 0. The particle passes the origin att = 0.

simplicity. We assume that the particle does not experience substantial deceleration
while significantly close to this observation point. In accordance with the Frank–
Tamm theory (see Jelley, 1958; Zrelov, 1968), we obtain scalar and vector potentials
that satisfy the Lorentz gauge condition

φL = 2qn−2
[
(x− vt)2 − J 2(y2 + z2)

]−1/2
(10.32)

AL = n2c−1 v φL, (10.33)

respectively, whereq represents the charge of the particle.
The corresponding electric and magnetic fields associated with this single charged

particle traveling through the medium are written in terms of the scalar and vector
potentials as

E = −∇φL − c−1∂AL/∂t (10.34)

and
H = B = ∇⊗AL, (10.35)
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where⊗ denotes the vector cross product. The Poynting vector,

S ≡ (4π)−1cE⊗H, (10.36)

characterizes the energy flux density (intensity) and its direction; its magnitude spec-
ifies only the energy flux density.

The spectrum of the light may be calculated by Fourier-transform methods (see
Jelley, 1958; Zrelov, 1968), or via Eqs. (9.28) and (4.25). We denoteE[ν] as the mean
frequency of the light, so that the mean photon energy ishE[ν], whereh is Planck’s
constant. This permits us to convert the time-varying intensity generated by a single
traveling charged particle into an approximate expression for the time-varying photon
flux density generated by the particle (see Saleh & Teich, 1991, Chaps. 5 and 11):

h(t) ≈ |S| /hE[ν] . (10.37)

10.6.1. Over what range of times does the foregoing description apply?
10.6.2. Deriveh(t) as defined in Eq. (10.37), and cast it in the form of a simple

power-law impulse-response function as in Eq. (9.2), assuming that the refractive
index of the medium departs significantly from unity. Obtain power-law exponents
and cutoff values in terms of quantities previously given, and give an approximate
form with a single power-law exponent.

10.6.3. What changes if the index of refraction differs only slightly from unity?
10.6.4. Under what conditions does a stream of charged particles yield a sequence

of photons well described by the fractal-shot-noise-driven Poisson process?

10.7 Earthquake occurrences A full description of earthquake activity requires
a marked spatiotemporal point process, so that the time and location of the epicenters,
as well as the total energy dissipated, is specified for each seismic event. The analysis
of earthquake patterns reveals that earthquakes obey power-law statistics in their
magnitude distributions, in their spatial clustering, and in their second-order time
statistics (see, for example, Kagan & Knopoff, 1987; Lapenna et al., 1998; Telesca
et al., 1999; Telesca, Cuomo, Lapenna & Macchiato, 2002b, which provides a recent
overview). However, in keeping with the approach used throughout this book, we
pay no heed to the spatial and energy information; rather, we treat all seismic activity
within a specified area, and above a limiting energy, as the events of an unmarked
point process.

The statistician David Vere-Jones (1970) used a version of the fractal-shot-noise-
driven Poisson process to model shallow (< 100 km) earthquakes of magnitude
> 4.5 that occurred between January 1942 and September 1961 in New Zealand.3

He obtained good fits to both the mean rate of earthquakes (about 22 per year), and
the variance–time curve, over a range of 0.1 to 1.5 years. From the latter statistic
at 0.1 year, and from the count-based autocorrelationRZ(1, 0.1 year), he concluded

3 An often-used alternative model for earthquake occurrences is self-organized criticality (see Sec. 2.7.6);
however, recent results indicate that earthquake data are not in good accord with this theory (Yang, Du &
Ma, 2004).
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that the average cluster contained six earthquakes and that the expected number of
earthquakes remaining in a cluster decayed with time ast−1/4. He further obtained
a cluster start time of 2.3 days after a primary event, and assumed that no mechanism
terminated the clusters at any specific time after that.

10.7.1. From the information provided above, identify the fractal-shot-noise-
driven Poisson process employed by Vere-Jones in terms of the parameters used
in this chapter.

10.7.2. The value ofβ used in the model (which is close to but greater than unity),
together withB = ∞, leads to a long tail in the seismic activity. How much time
must pass after a cluster starts so that, with 0.8 probability, no events still remain in
the cluster?

10.8 Diffusion Consider a collectionu0 of infinitesimal particles, all initially at
some pointx0 of a Euclidean space of (integer) dimensionDE < 4 at a starting time
t = 0. The concentrationu at some other pointx and some later timet will then
vary in proportion to a Gaussian density with a variance that increases with time in a
power-law fashion (see, for example, Pinsky, 1984),

u(x, t) = u0 (4π∆ t)−DE/2 exp
(
−|x− x0|2

4∆ t

)
, (10.38)

where∆ is the diffusion constant. We assume that the particles have some lifetimet1,
resulting inu(x, t) ≈ 0 for t > t1. Now suppose that some external process deposits
packets of concentration at random timest that form a homogeneous Poisson process,
and letuΣ(x, t) represent the linear sum of the decaying concentrations arising from
all of the deposited events. Finally, suppose that secondary events occur in a random
fashion, with the generation probability of an event at a particular timet and location
x proportional to the accumulated concentrationuΣ(x, t) at that time and location,
independent of other generated events.

10.8.1. Show how the fractal-shot-noise-driven Poisson process provides a useful
model for the resulting secondary event process.

10.8.2. What values ofβ are likely operative? What dimensionality leads to exact
1/f noise?

10.8.3. Demonstrate how the approach can be generalized to the case where the
packets arrive at different pointsx, and need not all have the same initial concentration
u0.

10.8.4. Provide an example of how physical constraints can make diffusion unre-
alistic as a model even though it yields a mathematically plausible fractal exponent.

10.9 Semiconductor high-energy particle detectorsA typical high-energy parti-
cle detector consists of a lightly dopedp–n junction with a large reverse bias voltage
applied across it (Knoll, 1989). Energetic charged particles enter the detector, usually
along thep–naxis, and create electron-hole pairs within a large part of the semicon-
ductor depletion region. The higher the energy of the particle, the greater the number
of electron-hole pairs produced. The high reverse-bias field then sweeps these carri-
ers out of the depletion region of the diode, electrons toward then region and holes
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toward thep region. This occurs before many of the electrons and holes recombine
although some of the carriers do recombine, thereby reducing the detected charge
created by the original energetic charged particle. A description of the recombination
process therefore proves useful.

Consider a single energetic particle entering the detector at timet = 0. Assume
that the electron-hole pairs are created instantaneously throughout the semiconductor
depletion region, distributed as a three-dimensional Poisson point process, and that
they begin diffusing immediately after their creation. Whenever an electron and a
hole approach within some critical radius, the two carriers either recombine, thereby
annihilating each other immediately, or first form an exciton and later recombine. In
either case the carriers no longer carry current and effectively vanish.

10.9.1. If we ignore the drift current, with what exponents do the concentrations
of electrons and holes decay?

10.9.2. How does drift affect the exponents?
10.9.3. Cast the recombination process in terms of an impulse response function.
10.9.4. Finally, show how the fractal-shot-noise-driven Poisson process may help

in understanding the total recombination process in a working particle detector.

10.10 Trapping in amorphous semiconductors: RevisitedAn alternative ap-
proach to the problem of trapping in amorphous semiconductors, initially considered
in Prob. 7.10, treats all conductance changes as events in an auxiliary point process
(Azhar & Gopala, 1992). Analysis of current flow in an AC128 germanium transis-
tor reveals relatively fast current fluctuations during conduction events, separated by
somewhat longer intervals between conduction events. For a fixed counting time, the
mean and variance of the numbers of conduction-event onsets assume similar values;
the same holds for the numbers of conductance changes within a conduction event.
Furthermore, all the secondary events taken together, which form the auxiliary point
process, have a spectrum that follows a1/f -type form. Considering the evidence
presented, suggest a plausible model for the sequence of conductance-change events.
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